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For a viscous incompressible fluid the low Reynolds number description of the 
flow generated by a thee-dimensional point source of oscillating strength 
situated on a wall is approximately quasi-steady in the neighbourhood of the 
singularity. This quasi-steady solution contains a number of unacceptable 
features, the principa,l one being that it is not a uniformly valid approximation 
within a small region surrounding the source point. In  addition to this the 
vorticity in this region is predicted to be zero everywhere on the wall except at 
the singular point where it is infinite, which does not seem to be a physically 
reasonable distribution. When account is taken of the finite radius of the hole 
through which the fluid is driven and the finite width of the wall, the above 
difficulties are resolved yielding results that are quite realistic and informative. 

1. Introduction 
Recent work by Tuck (1970) investigates the viscous flow at low Reynolds 

number associated with a two-dimensional point mass source of oscillating 
strength situated on a wall. The results indicate that the dominant part of the 
flow in the neighbourhood of the source point is quasi-steady in the sense that 
the asymptotic solution predicted for this region is the product of the corres- 
ponding steady solution and a sinusoidal time component. A similar situation 
exists for the analogous oscillatory axisymmetric problem of a three-dimensional 
point source on a wall, but for this case the three-dimensional quasi-steady 
solution is not uniformly valid in the region surrounding the source point 
(unlike the two-dimensional result) since it predicts that the convective terms 
in the governing non-linear non-dimensional stream function equation become 
just as important as the diffusive terms, as the source point is approached. 

The difficulty is removed if the problem is attempted with the point source 
replaced by a circular hole of finite width through which the fluid flows with 
the same oscillatory volume flux. This problem is formulated in $ 2  and the 
analysis of the flow field a t  low Reynolds number is performed by considering 
an inner region with the length scale chosen as the radius of the hole and an 
adjacent outer region. The dominant part of the outer region solution is due to 
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a point source of oscillating strength on the wall, the relevant results obtained 
in $4 resembling those obtained by Tuck in the two-dimensional case. 

The inner region geometry is suitable for the problem to be treated in axi- 
symmetric oblate spheroidal co-ordinates, this being carried out in 93. The 
quasi-steady results obtained are quite interesting in that they are self-consistent 
in the immediate neighbourhood of the hole, unlike the corresponding point 
source results. For the special problem of steady flow (zero frequency of 
oscillation) through a finite hole, the results are uniformly valid throughout the 
whole flow field for small values of the Reynolds number, it conclusion that 
does not appear to have been previously drawn. 

Although taking account of the finite width of the hole removes some un- 
acceptable features of the point source analysis (steady or unsteady), there 
still appears to be predicted an unusual vorticity distribution on the wall. It is 
shown, however, that consideration of the finite thickness of the wall eliminates 
this further abnormal feature, just as consideration of the finite width of the 
hole enabled the nature of the flow in the hole’s vicinity to be resolved. 

2. Formulation of the problem 
Consider an infinite impervious rigid wall containing a circular hole of radius a. 

An incompressible viscous fluid is flowing backward and forward through the 
hole at a rate such that the volume flux at  any instant is 277772 cos d* where t ,  
denotes the dimensional time. If x* denotes the dimensional position vector 
referred to the centre of the hole as the origin, and Y, denotes the dimensional 
stream function, corresponding non-dimensional quantities t ,  x and Y are defined 

x* = ax, t ,  = u-lt, Y* = m y .  

The geometry of the problem suggests the use of non-dimensional axisym- 
metric oblate spheroidal co-ordinates (Y,  2, 4) related to the cylindrical polar 
co-ordinates (p ,  $, z )  by 

by 

p = [(1+ Y2)(1-22)]4, z = YZ, 

the fluid and the wall occupying the region 0 < Y < CO, - 1 < 2 < 1 ,0  < 4 < 271. 
The surfaces Y = constant are oblate ellipsoids of revolution about the x axis 
while the surfaces 2 = constant are one-sheeted hyperboloids of revolution 
about the z axis. In  particular the axis of symmetry is represented by 2 = i- 1, 
the wall is represented by 2 = 0 and the hole through which the fluid pulsates is 
represented by Y = 0. 

In terms of the above non-dimensional variables the axisymmetric, swirl-free 
equation for the stream function (in the absence of body forces and thermal 
conduction) is 

where 
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the Reynolds number R is defined by 

R = m/av 

(V denotes the kinematic viscosity) and the parameter S is defined by 

S = a2u/v, 

the ratio of the Reynolds number to the Strouhal number. 

(i) the no-slip conditions 
The respective boundary conditions are: 

Y?=aY/aZ= 0 on Z = O ;  
(ii) the condition 

which produces the correct flux through the hole; 
(iii) the condition 

[i/(i -Z2)+] aY/aY = o on 2 = 1 

to ensure zero transverse velocity on the axis of symmetry; 
(iv) the requirement that the velocity components must tend to zero as 1x1 -+ co. 

Y = c o s t  on Z =  k l ,  

3. The inner region 

for the stream function is given by 
For the case R < 1, 8 < 1 an approximate low Reynolds number expression 

Y ( Y ,  2, t )  = Y@)( Y ,  2, t )  + (terms of higher order in R or 8). 

If this expression is substituted into (2.1) it is seen that Yo) satisfies the zeroth 
approximate equation 

under the same boundary conditions (i)-(iv) as for Y. With 

D4Yp@) = 0 

Y"O)(Y,Z,t) E $(O)(Y,Z)cost, 

D4$(0) = 0, 
the problem reduces to solving 

subject to the same boundary conditions as apply to Y except that (ii) becomes 
$(O) = 1 on Z = 1. The reduced problem then corresponds to that for steady 
flow through a hole, which has been solved previously by Sampson (1891) using 
separation of variables and recursive properties of integrals of Legendre functions. 
It is productive and simpler to consider the more general equation 

where 
L i ? p  = 0, 

a 2  a 2  a a 
(( 1 + Y2) - + ( 1  - 2 2 )  - + (1 - k) Y - - ( 1  - k) 2 -1 1 

k - yZ+z2 a y2 az2 aY az ' L =- 
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@O) = 0 on 2 = 0, 

aqW/aZ = 0 on 2 = 0, 

$(a' = 1 on Z =  +1, 

(~-Z2)-tka$(o)/aY = 0 on 2 = 1, 

and the appropriate far-field conditions. 
The form of the boundary conditions suggests seeking a solution that is 

independent of Y ,  and a generalized axisymmetric potential theorem due to 
Weinstein (1955) yields 

where K; and K,  are arbitrary constants. The first integral is a solution of 
L,<@(O) = 0, so the vorticity arises solely from the second integral. 

The equation and boundary conditions associated with the two-dimensional 
problem of low Reynolds number flow though an infinite slit correspond to 
the above with k = 0, from which the solution is seen to be 

2/7~)(arcsinZ-Z[1-2214 (-I< ( O  .Z< l)' O ) ,  I 
where the principal value of the inverse sine function is to be used. This result 
agrees with the steady two-dimensional result obtained by Green (1944). In  
much the same way as is to be shown for the three-dimensional situation, the 
two-dimensional inner unsteady result can be considered in conjunction with 
the outer solution already obtained by Tuck enabling the point source description 
and its inherent prediction of infinite velocity to be replaced by a more suitable 
flow geometry. 

For k = 1 the equation and boundary conditions are those associated with 
the inner region of the axisymmetric problem being considered and yield the 
important result 

(2/77) (arcsin 2 - Z[1- 2214)  
FO) = { - ( 

from which the corresponding zeroth-order approximate velocity components are 
( T 3Z2 cost/[( 1 + Y2)  ( Y 2  + Z2)]t, 0 ,O) .  The positive and negative signs associated 
with these expressions for the stream function and velocity components indicate 
that the flow on one side of the wall is into the hole while on the other side it is 
away from the hole. These results predict that in the inner region the zeroth- 
order approximate streamlines are hyperbolae, that the velocity is nowhere 
infinite and that the velocity in the hole ( Y = 0) is parallel to the axis of symmetry 
with a non-dimensional value varying monotonically from - 3 cost at the centre 
to zero at  the edge (a type of axisymmetric oscillatory shear flow). 

The vorticity derived from (3.1) has components 

(O,O,  F6Z(1 -Z2)*~~~t /{ (Y2+Z2)  [1+ Y2]i}). 
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This was not considered by Sampson but is interesting in that it predicts zero 
vorticity not only 0x1 the axis of symmetry but also on the wall, except at the 
edge of the hole ( Y  = 0, 2 = 0)  where the vorticity becomes infinite. For the 
semi-infinite region 0 < Z < 1 on one side of the wall, it is seen that on any 
ellipsoid Y = Y,, at a fixed time to, there is a maximum of negative or positive 
vorticity at 2 = Y,/[2(1+ Yi)]* with a value 

- 6 [Z + Y:]) cos to/(Yo (3  + 2Y2,) [1+ Y$). 

(The sign of this vorticity will be opposite to the sign of cos to.) The locus of these 
‘maxima’isthecurve Y 2  = 2Z2(1+ Y 2 )  (0 < 2 < 1 , 0  < Y < co)whichisasymp- 
totic to 19 = 4.. as Y + co. (The line 6 = $ 7 ~  is the corresponding locus for the steady 
point source problem.) On each hyperboloid the amount of positive or negative 
vorticity approaches zero monotonically as Y -+ co, and so it is concluded that 
all the vorticity is created at the edge of the hole and diffused out into the fluid. 

The physically unreasonable vorticity distribution on the wall is avoided by 
taking account of the finite width of the wall so that the no-slip boundary 
conditions are imposed on the thin hyperboloid 2 = E (where E is small) instead 
of on 2 = 0. The zeroth-order approximate solution of this problem is 

and the non-zero vorticity component is 

-6Z[1-Z2]~cost/{(l-s)2(1+2s)(Y2+22)[1+ Y2]t}.  

Thus on the wall 2 = s the vorticity distribution is approximated by the 
expression - 6s[1- s2]t cos t/{( 1 - E ) ~ (  1 + 2s) ( Y 2  + s2) [1+ Y2]*} which is large (but 
finite) at  Y = 0, is non-zero for other finite Y ,  and tends to zero in the far part 
of the inner region as Y 3 co. 

The self-consistency of solution (3.1) is examined by considering the various 
terms in equation (2.1). A typical viscous term has the form 

z( 1 - 2 2 )  (1 + ~ 2 )  cos ti( YZ  + 2213, 

~ 2 3  Y ( 1 - 2 2 )  C V S ~  t i (  Y Z  + 2 7 3  

while of the neglected terms a typical non-linear term has the form 

and the local inertia term has the form XZ( 1 - Z2) sin t /(  Y 2  + Z2). 
As Y-20 the ratio of the non-linear terms to the viscous terms is O(RY) 

and the ratio of the local inertia terms t o  the viscous terms is O(S), which 
indicates that the solution is self-consistent in the neighbourhood of the hole 
for small values of R and S. This analysis includes the case of steady flow which 
is obtained by taking u = X = 0;  then the relevant steady flow results are 
those already given in this section with the time factor omitted. 

As Y -f 03 it is useful to consider the steady and unsteady cases separately. 
For the steady case the ratio of the non-linear terms to the viscous terms is 
O(R/ Y )  as Y -+ 00, hence the low Reynolds number steady solution 

(3.2) 
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is a uniformly valid approximation over the entire region occupied by the fluid. 
Since Z N cos 0 and Y N r as Y -+ co, the solution in the far field approaches 

~ 0 ~ 3 8 ,  which is the classical viscous solution for the stream function in the 
low Reynolds number problem involving a steady three-dimensional point 
source (or sink) on a wall-a solution which is invalid near the source point. 

The above analysis shows that this point source solution has been superseded 
by the uniformly valid approximate solution (3.2) which takes account of the 
finite width of the hole through which the fluid flows. 

For the case of unsteady flow at low Reynolds numbers the ratio of the non- 
linear terms to the viscous terms is O(R/ Y )  as Y + 00, but the ratio of the local 
inertia terms to the viscous terms has to be considered as well. This ratio is 
O(XY2) as Y -+ 00, which suggests that the local inertia terms should be included 
in an outer region analysis when Y is O(X-&). As this region is approached, the 
solution (3.1) tends towards that for a quasi-steady viscous flow due to a point 
source of oscillating strength situated on the wall at  the origin. 

4. The outer region 
In  order to take account of the importance of local inertia effects at  large 

distances from the hole, the problem formulated in Q 2 is reconsidered by intro- 
ducingnewvariablesx’ = S&xandY’(x’,t) = Y(x,t).ForR < 1 , X  < lasuitable 
expansion in this outer region is 

Y’(p‘, z’, t )  = Y(O)’(p‘, x ’ ,  t )  + (terms of higher order in R or S ) ,  

where (p’, 4 , ~ ’ )  are cylindrical polar co-ordinates referred to the centre of the 
hole as origin. Substitution of this expansion into (2.1) yields the zeroth-order 
approximate equation 

where 

In terms of the new variables it is seen from the boundary conditions (i)-(iv) of 
$ 2  that 

Y(@‘ = cost on pf = 0, 

aY(O)’/az’ = 0 on p’ = 0, 

with a zero velocity far-field condition. This outer problem for Y(0)’ is the axi- 
symmetric equivalent of Tuck’s problem and a very similar method is used to 
solve it. 

Three simplifications are made at this stage; first, the primes on the variabIes 
and operators are omitted as no confusion arises in the remainder of the analysis, 
second, the symmetry of the flow about the wall except for the flow direction 
makes it sufficient to consider the fluid on one side of the wall only, and third, the 
boundary conditions suggest that the linear equation (4.1) has a solution of 
the form 

Y(O)(p, x ,  t) = Re{$-(O)(p, z )  e“}. 
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This means that the complex function $(O)(p, z )  satisfies 

f@$(O) - a 2 9 2 $ ( 0 )  = 0, 

where a2 = i, with boundary conditions 

$@) = a@(O)/az = 0 on z = O(p + O ) ,  

= 1, a$(O)/az = 0 on p = O(z 2 0) 

and the zero velocity far-field condition. 
To solve this differential equation set 

@J) = - 9 2 $ ( 0 )  (4.2) 

which reduces the fourth-order differential equation to a second-order one, 
namely 

9 2 Q ( O )  - a2Q2(0) = 0. 

If separation of variables is applied, the axis and far-field conditions yield 

= Jom A(h)pJ,(hp) e-f15dh, 

where h2 = P2 - a2 and the real part of p is positive. When this result is sub- 
stituted into (4.2) a similar technique gives 

The boundary conditions on the wall (z  = 0) yield two integral equations 

and 

which can be solved by inverse Hankel transforms from which it can be deduced 
that 

and hence 
A ( 4  = - - W + P ) ,  B(4 = P/(h-P), 

h(h+P)e-~5J,(hp)dh, 

where p = rsin8, z = r cos 8. The term ‘cos 8’ satisfies B2yYo) = 0 and the 
boundary condition = 0 when 8 = in and is, in fact, the steady solution 
for a point source in an inviscid fluid. 
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The integml for 9 ' 0 )  can be further expanded in terms of known functions 
leading to 

which is a sum of three irrotational terms and a rotational term. 

shown (see appendix) to be 
The asymptotic expansion in the far-field of this outer region as z -+ co can be 

sin2 8 3 sin2 8 cos 8 pJ) = COS8----- + O ( T ~ )  +exponentially small terms. 
ar a2r2 

The leading term is simply the irrotational source stream function for steady 
flow, whereas the higher-order terms can be interpreted as a dipole, quadrupole 
and so on (cf. Tuck). It is in the far part of the outer region that the effects of 
vorticity can be most easily seen. Reintroducing the real function Y(O)(r, 8, t ) ,  its 
far-field expansion as z - f c o  at 0" phase (t  = 0, 277, ...) is 

sin2 8 
2tr 

Y@)(r ,  8, 0) - cos 8 - __ + O ( r 3 ) ,  

and at 90" phase (t  = in, gn, ...) is 

+ o(r-3). 
sin2 8 3 sin2 8 cos 8 

Y(O)(r, 8, &T) - __- 
2Sr r2  

At 0" phase then, the zeroth-order approximate streamlines in the far field 
behave as if they are emanating radially from a point source at p = 0, x = 1/24, 
but at  90" phase the dipole term is dominant and they appear as closed loops 
in any meridian plane. These results display a very strong analogy to the two- 
dimensional case as presented by Tuck, and at  phases other than O", go", 180' 
or 270" it would be expected that there would be some closed streamlines and 
some radial ones. 

The strong analogy between th0 axisymmetric and the plane two-dimensional 
case is continued in the near-field expansion of the outer solution. As r-+O it 
is shown in the appendix that 

+o)(r,O) ~ 0 ~ 3 e + ~ a 2 r 2 ~ 0 ~ 2 8 ( 1  - c o s ~ ) + o ( ~ ~ ) .  

Here the leading-order term 'cos38' is a solution of g4@(0)  = 0 and indicates 
that the diffusive terms dominate the time derivative terms in the near-field 
part of the outer region. The real zeroth-order approximate stream function in 
this expansion a s  r -+ 0 is 

Y(O)(r, 6 ,  t )  = C O S ~  6 cost - Br2 cos2 6(  1 - cos 6) sin t + O(r4) 

and hence at zero phase, the streamlines in this near field appear to be almost 
radial, whereas at 90" phase they are approximately the curves given by the 
solutions of r2 cos2 8( 1 - cos 6) = constant. These curves resemble hyperbolae in 
the (p, z )  plane. The fact that Y?O)(r, 8, t )  tends to zero at 90" phase both as r 
becomes small and r becomes large confirms that there are closed streamlines at 
this phase. 
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The leading order term for Y(O) as r -+ 0 is that for quasi-steady classical viscous 
flow due to a point source of oscillating strength situated on a wall. This is 
just the type of flow predicted in $ 3  for the far part of the inner flow region. 
Thus the inner and outer unsteady solutions can be matched to zeroth order in an 
overlapping region, and a uniformly valid composite expansion can be obtained. 

5. Conclusion 
Oscillatory flow of a viscous incompressible fluid through a circular hole in 

a wall, such that the volume flux has a constant amplitude, has been analyzed 
at  low Reynolds numbers by dividing the flow field into two regions; an inner 
one near the hole where the diffusion of vorticity is dominant, and an outer one 
in which both the diffusive and local rate of change of vorticity are dominant. 
The flow in the outer region appears to be generated by a three-dimensional 
point source of oscillating strength. As in the two-dimensional problem (Tuck 
1970) the essential feature of the results for this region is the presence of closed 
streamlines as the singularity switches over from one with a sink-like nature to 
one with a source-like nature and vice versa. 

The inner region problem is quasi-steady in the sense that the results obtained 
are those for the corresponding steady problem times the harmonic time- 
dependent term. The important feature of the approximate expression obtained 
for the stream function in this inner region is that it is self-consistent in the 
vicinity of the hole. As this feature is also true for the corresponding steady case, 
the results obtained are therefore useful to a study of suction and injection at 
low Reynolds numbers. 

Solutions with arbitrary time dependence can be constructed from the 
sinusoidally time-dependent solutions presented in this paper, since the results 
for both inner and outer regions are obtained by solving linear equations under 
linear boundary conditions. 

The authors are indebted to Dr E. 0. Tuck for his encouragement in the 
initial stages of the paper, and to the referee for suggestions which resulted in 
an improved presentation. 

Appendix. Asymptotes of the outer solution 

for small h under the integral sign. Thus, 
A valid far-field asymptotic expansion with z large is obtained by expanding 



666 N .  J .  de Mestre and D. C .  Guiney 

which tends to zero like e-az as z -+ 00. Note that the above analysis has assumed 
nothing about the magnitude of p and is, in fact, true for arbitrary finite values 
ofp2/z. When p2/z is also large then it can easily be shown that 

a ecUz 

P 
Q(0) N - __ + 0(r2  e--az) ( x  -+ 00). 

Hence it is true that 0 exponentially for all p as 2 3 0 0 .  

Now it has been shown that 

3sin20cos8 p Q(0) 
$(O)(p, 2) = cos 8 - --1 h,8e-hzJl(hp)dh+-- a2 

a2r2 a2 0 

and the integral in this expression can be expanded as x+00 thus: 

- $~omh[hz + a2]i e-”J1 (Ap) dh 

h e-”J1 ( h p )  d h  - A 3  e-hzJl (hp) d h  + . . . 
2a3 

m 

sin2 8 3 sin4 8 - 12 sin2 8 cos2 19 
ar 

+ o(r-4). 
2a3r3 

+ - - -~ 

This expression is uniformly valid with respect t o  p and hence the asymptotic 
expansion for @(O) for large x is 

sin2 8 3 sin2 8 cos 8 3 sin4 8 - 12 sin2 8 cos2 8 + op-4) 2a3r3 + $(O) N COS 8 - - - 
ar a2r2 

+ exponentially small terms from a(@, as r -+ 00. 

This expansion, however, is not valid for larger such that p is large and x is small. 
It can be shown, however, that in this region Q(O) tends to zero but the decay is 
not exponential. 

Similarly, the asymptotic expansion for small r can be obtained, at  least for 
the first few terms, by expanding for large A and keeping hp and Ax bounded. 

$-‘*)(p, Z )  = cos 8 + 5 IOmh(A + p) (e+ - e+) J1 ( Ap) dh 

= cos o+$S,”h ( 2 A  the (exp [ - a2z/2h + ...I - 1) Jl(hp) d h  

= cos 8 - sin28 cos 0 + $a2r2 cos2 8( 1 - cos 8)  + O(r4) 

= cos3 8 + &aW cos2 8( 1 - cos 8) + O(r4) as r + 0. 
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